Calculus/Expert Profile


South Africa

I can solve problems in calculus, advanced calculus, differential and partial differential equations, complex variables, Fourier series and integrals, analysis,Gram-Schmidt orthogonalization, and Legendre polynomials. Soon I will be able to answer any question on advanced engineering control.

Experience in the area

Taught at university level


Researching the Riemann Zeta Function Hypothesis

What do you like about this subject?

One of the most beautiful branches of mathematics is Projective Geometry. In a nutshell lines projected from a periphery give the most amazing shapes.

What do you still hope to achieve/learn in this field?

I hope to solve the Riemann Zeta Function Conjecture

Something interesting about this subject that others may not know:

Has to do with prime numbers and encryption codes for computers

Something controversial or provocative about this subject

New mathematics has been developed assuming the truth of the Riemann Conjecture.So it is quite important that this be concluded one way or another. The Riemann Zeta-Function, by Aleksandar Ivic surmises that it looks like the only way to solve this is by creating new mathematics that does not exist today. Seems like quite a daunting task

Average Ratings

Recent Reviews from Users

Read More Comments

    K = Knowledgeability    C = Clarity of Response    P = Politeness
Prashant S Akerkar12/04/15101010Dear Prof Mervyn Thanks. Thanks & Regards .....
Prashant S Akerkar10/31/15101010Dear Prof Mervyn Thanks. Thanks & Regards .....
Prashant S Akerkar10/27/15101010Dear Prof Mervyn Thanks. Thanks & Regards .....
Prashant S Akerkar10/27/15101010Dear Prof Mervyn Thanks. Thanks & Regards .....
Prashant S Akerkar10/21/15101010Dear Prof Mervyn Thanks. Thanks & Regards .....

Recent Answers from mervyn

2015-10-28 Pendulum Wall Clock.:

This is the real mathematics of pendulum motion based on elliptic functions.     Denote by W the weight in lb. of the pendulum and let OG = h(feet), where G is the centre of gravity ; let Wk^2 denote the

2015-08-11 calculus problem help:

A B C D E.    Ex. Let f(x) = xsin(1/x) x not = 0.          = 0         x = 0.    f'(x) = sin(1/x) - 1/x(cos(1/x)   xn0t = 0.    At x = 0 the mean val. thm.does not apply, since 1/x is not defined

2015-03-14 greatest integer function:

Unfortunately It is difficult to draw as this sight has no tools to draw with.  But [x] is the greatest integer function. Take a few different values of x say 1.6.  The greatest integer <= 1.6 is 1, so

2015-01-09 Help:

Let dy/dx = 6x^2 + 10x - 4 = 0,  then3x^2 + 5x - 2 = 0    x = 1/3 or x = -2.    Now d^2y/dx^2 = 12x +10 = 0 for4 infl. So x = -10/12 = -5/6  and y = -2(5/6)^3 + 5(5/6)^2 + 4*5/6.    F"(1/3) = 14 > 0 Curve

2015-01-05 Derivatives:

In (-inf,-10) decr.  In (-10, 0) incr,  In(0 ,10)  incr.    When the derivative is + fn is increasing.    Df. If x1 > x2 and f(x1) > f(x2) the f is incr.      "  "   "       f(x1) < f(x2) f is decr.  


Ask A Question


All Answers

Answers by Expert:

Ask Experts


©2016 All rights reserved.